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Abstract. The relationship between equilibrium properties in nucleation theory and cluster 
partition functions is explored. A new approach to relating the partition function for a cluster 
wilh boundaries fixed in space IO that required in nucleation theory, which includes arrangements 
omitted by other approaches, is described. FlucNations about equilibrium in cluster size and 
energy are discussed. The usual way of obtaining the steady-state nucleation nte does not tlke 
account of possible differences in cluster energy distributions between equilibrium and steady 
state. A Fokker-Planck equation for the cluster distribution in size and energy is derived and 
an analytical approach to obtaining the steady nucleation flux fmm it is presented. In oses 
where the vapour molecule’s latent heat of vaporization is much greater than its h a t  capacity. 
this approach gives the same values as those predicted by a simpler analytical formula derived 
previously. In other cases. the simpler formula underestimates the flux. although only by modest 
factors. Extensions of this treatment are discussed. 

1. Introduction 

The theoretical study of homogeneous nucleation of liquid droplets from vapour has a long 
history, dating back to the development of the classical theory by Becker and Doring [I], 
Frenkel [2], and Zeldovich [3], and the literature includes a book by Abraham [4] and 
two volumes edited by Zettlemoyer [5,6]. However, a recent review by Oxtoby 171 has 
highlighted the fact that a complete understanding of all the experimental results is still 
lacking. 

Most nucleation theories assume that a vapour contains groups or ‘clusters’ of different 
numbers of molecules. In the classical theory, the equilibrium concentration of vapour 
clusters containing i molecules is given by 

y - ikT Ins] V 
where n l / V  is the monomer concentration, y is the liquid surface tension, S is the vapour 
saturation, and A I  is the monomer surface area (assuming spherical monomers with volume 
ut = m,/pl, where m, is the molecule mass and p~ is the liquid density). For S > 1, 
equation (1) has a minimum at the critical cluster size i’, is given by, 

i Resent address: Department of Nuclear Science and Technology, Royal Naval College, Greenwich London 
SEI0 9NN, UK. 
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Tablc 1. Various dimensionless pammeters for water at 293 K and nanane at 273 K. The 
thermophysical data are taken from [251 and 1261. 

Parameter water Nonane 

S 4 50 
YAilkT 8.4 13.9 
i' 65.9 13.3 
ai 11.9 3.2 

24.4 21.3 
crlk 9.06 34.2 

18.14 16.3 
3.07 227 

(y - Tdy/dT)Al/kT 13.5 28.1 

hlB ( i ' P  (i') 0.033 0.12 
HlkT 11.8 -15.3 

Js, /Jz  (equntion (43)) 0.0151 0.396 
J d h  (euuation (44)) 0.0151 0.275 

Table 1 gives typical values of A I  y / k T  and i* for water and nonane, two liquids that have 
been studied extensively experimentally. The other parameters in table 1 will be discussed 
in due course. 

The inadequacies of the classical liquid droplet model are well known [7] and much 
effort has been directed at obtaining an improved characterization of vapour clusters. 
However, this paper is mainly concerned with two other aspects of nucleation theory. 
First, consideration is given to how the equilibrium distribution is obtained once a correct 
characterization of a cluster is available, and secondly, how the steady state nucleation rate 
can be obtained from this equilibrium distribution. Although the classical liquid droplet 
model is used to obtain numerical results, the development can be applied to any other 
cluster model. 

In section 2, it is shown how the equilibrium distribution is related to the cluster partition 
function. The treatment is similar to that of Reiss e#al [8], and like them, the relationship 
between the partition function for a cluster stationary in the laboratory and that for a cluster 
that can be anywhere in the container volume is considered. Section 3 is concerned with 
fluctuations of cluster properties about their mean values in equilibrium, as a preliminary 
to considering steady-state distributions in sections 4 to 7. In section 4, the usual way 
of obtaining the nucleation flux is reviewed and it is pointed out why it is inadequate. 
Section 5 is concerned with the derivation of a Fokker-Planck equation for the steady-state 
concentration in size and energy. This section expands on the approach of Feder et al [9]. 
In section 6, a procedure developed by Langer [IO] is applied to obtain the steady flux from 
this Fokker-Planck equation, and in section 7 values for the flux from this procedure are 
compared with more accurate numerical values obtained previously [ I  I], as well as with 
the simpler formula derived in [9] .  In the concluding section, the results of this study are 
summarized and some suggestions given for further work. 

2 Equilibrium duster distributions 

The law of mass action relates the equilibrium concentration of clusters containing i 
molecules fiereafter called i-clusters for brevity) to the number of monomers in the volume 
V: 



Distributions of vapour clusters in nucleation 5055 

where q1 = V/A3 is the partition function for a monomer in a volume V and qi is the 
partition function for an i-cluster, given by 

9; = i.!h3' exp[-U(rI,rz,. .., r ; ) / k T ] d q  .. . dri  (4) ' S  
with A = (hZ/2irm,kT)'r*. Equation (3) can be derived by either a canonical [SI or grand 
canonical [I21 approach. 

The free energy, Fi, is defined by 

Fi = -kT h q i .  (5) 

For S > 1, cq( i )  has a minimum at i = i* and, from equation (3) 

where = kTln(ny'/ql) is the chemical potential of the vapour at equilibrium, n;" being 
the number of monomers at saturation. Equation (6) shows that the chemical potential of the 
critical cluster, pi, is equal to that of the vapour with which it is in (unstable) equilibrium. 
Note incidentally that the chemical potential of the molecules in a cluster is larger than in 
the bulk liquid. In the classical liquid droplet model this can be understood in terms of the 
very high pressure inside the cluster. The internal pressure pint is related to the external 
pressure p by Laplace's equation: 

p - p = Y  2 
R mt (7) 

where R is the cluster radius, equal to (3m,i/4r~pl)''~ in the liquid drop model. Although 
it is usual to assume that liquid-like clusters are incompressible, typical pressure differences 
pint - p from (7) are about I@ N/m2. Since liquid compressibilities are of the order of 

Returning now to the law of mass action, equation (3), it is pointed out that, since qi is 
proportional to A-31 and q1 is proportional to A-3, ni is independent of A, or of Planck's 
constant, h. This is not surprising-by writing the classical partition function (involving 
integrals over co-ordinates instead of sums over states), all quantum effects have been 
ignored and h just appears as a scaling parameter which cannot give rise to any measurable 
effects. However, some nucleation formulae based on classical statistical mechanics appear 
to include a dependence on h. This is m e  of the earliest expositions of the Lothe-Pound 
theory [14,9], although in their later papers [5,6,15] the h-dependence disappears due to 
the assumed form of the replacement term. The recent result derived by Huang and Seinfeld 
[16], based on the cell theory of liquids, also includes an h-dependence. It would appear 
that some modification of their treatment is needed to remove this. 

Introducing the monomer and cluster free energies (see equation (5)) and the saturation 
S = nl /ny '  into (3) gives the equilibrium cluster concentration as 

m3/J, the fractional volume decrease can exceed 10%. 

Equation (8) predicts that cq(i) is proportional to S', in contrast to the classical result, 
equation (I), which predicts c'q(i) is proportional to Si+'. It is now widely accepted [7] 
that the saturation dependence in (8) is correct. 
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Finaily in this section, the range of integration over the molecular coordinates ~j in 
the cluster partition function, equation (4) is discussed. The question of cluster definition 
has been considered recently in papers by Reiss and co-workers [17, IS]. We shall follow 
these authors in assuming that molecules in a cluster move within a spherical shell of radius 
R and volume U, = iuo, where vo is the molecular volume in the cluster. The partition 
function for such a cluster with boundaries fixed in the laboratory frame, denoted by qfb ,  
is given by 

x iR r?drj 1: d(cosO,)ib d@i exp(-Cl(q, rz, . . . , r i ) / k T )  (9 )  

where the polar coordinates (rj,0,, $j) of the vectors T~ have been introduced. Now, yf"b 
is independent of system volume V whereas qi must be proportional to V .  Equation (9) 
cannot simply be multiplied by V to give qi since qj* already involves integrations oi'er 
all 3i molecular coordinates. One alternative is to follow Abraham (Chapter 5 of [4]; 
and consider a cluster centred on a monomer, labelled 1 in figure l(a). This monomer is 
free to move throughout the container volume, but the remaining (i - 1) monomers musl 
lie within a distance R of it. However, this approach does not count all the arrangemens 
which do not have a monomer at their centre (that they do count some such arrangements 
is illustrated in figure I@): the arrangement shown can be viewed either as being centred 
on a monomer (solid circle) or on empty space (dashed circle)). Also, the integrations do 
not include all arrangements with a monomer other than that labelled 1 at the centre. Note 
that monomers should be treated as being distinct when evaluating the integrals in qi, the 
factor I / i !  before the integrals accounts for their actual indistinguishability. 

(4 (6) (4 

Figure 1. (a) Cluster defined as centred on a molecule. (b)  Cluster defined as centred on the 
centre of mass. (c) Geometric shape used lo define cluster containing h e  molecules. 

Reiss and co-workers [17,18J have argued that a cluster can be defined unambiguously 
as being centred on the centre of mass of the molecules it contains. The centre of mass 
(position vector T )  is allowed to move throughout the container volume to give qi. However, 
this procedure also omits some arrangements, as illustrated in figure l(b). The arrangement 
shown (within the fixed boundary shown as a solid circle) has its centre of mass at X. 
However, the dashed circle, radius R, centred on X does not include all the molecules in 
the cluster. Therefore this arrangement is never counted in the Reiss approach. Although 
diffuse arrangements such as the one shown are likely to have a larger potential energy than 
arrangements that are included, and therefore yield only a small contribution to the partition 
function, it would be more satisfactory to include them. We now discuss how this can be 
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done for a perfect gas cluster (or, more generally, for a cluster model where the interaction 
potential is independent of molecular positions). 

Consider first the case of three molecules lying within a spherical shell of radius R. 
Molecule 1 (at A, say) can be anywhere in the container volume, however, molecule 2 (at 
B) must be within a distance 2R of A if it is to lie in the shell. Finally, molecule 3 (at C) 
must lie within the solid of revolution formed by rotating the part of the disc in figure I(c) 
to the right of AB about the line AB. Let this volume be V,(r) and let the volume formed 
by rotating the part of the disc to the left of AB about AB be VZ(r), where r is the length 
of AB. The volume (VI@) - VZ(r)). formed by rotating the shaded part of the disc in 
figure l(c) about AB, will be referred to as the 'shaded volume' and the remaining volume, 
Vz(r), as the 'unshaded volume'. If molecule 3 lies within the shaded volume, then all 
possible arrangements of the 3 molecules are counted by allowing C to move throughout 
this volume (while B moves throughout the sphere, radius 2R, centred on A). However, 
if molecule 3 lies within the unshaded volume, only 1/3 of the possible arrangements are 
counted when C moves through Vz(r), since arrangements that interchange the molecules at 
A or B with the one at C are distinguishable. The volume available to the three molecules 
is thus 

where Rfim = ( R 2  - r2/4)'/2 and uc = 4nR3 f3 .  
To extend the treatment to i molecules, it is necessary to ensure that a unique sphere is 

chosen to enclose the molecules (in general. there will be infinitely many spheres enclosing 
each arrangement). One way to do this is, for each arrangement of molecules within the 
sphere, freeze the molecules in position and then let the sphere fall 'under gravity' onto the 
molecules. There are three possible ways in which the sphere may come to rest: 
(I) touching one molecule (the 'top' one), which can move throughout V, the remaining 

(i - 1) molecules moving within uc. There are i choices of the top molecule, so these 
arrangements give a contribution to the volume integrations of iVu:-l. 

(U) touching two molecules, the first being anywhere within V and the second lying 
within the hemisphere of radius 2R (and therefore volume 4 4  centred on the first and below 
it. However, arrangements in which the second molecule lies within the sphere resting on 
the first have already been counted in (I) above, so the volume available to the second 
molecule that gives rise to new arrangements is 3u,. There are i choices of first molecule 
and (i - 1) choices of second molecule, so the total conhibution from these arrangements 
is 3i(i - l)Vu:-l. 

(IJI) touching 3 molecules. Clearly, this will give rise to a factor proportional to 
i(i - l)(i - 2)Vu:-'. The constant of proportionality can be found by comparing the 
sum of the contributions in (I), (IQ and (JII) with equation (IO) for i = 3, giving the value 
3x2/32. 
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For a perfect gas cluster, qPb = V ; / A ~ ~ ~ !  and so the relation between qj and qFb can 
be written 

For such perfect gas clusters, the principle difference between the result (1 1) and the centre 
of mass treatment by Reiss et QI [SI is the approximate dependence of i3 instead of i3/2. 
For clusters of interacting molecules, the difference may be less since, as already noted, the 
arrangements omitted from the centre of mass treatment tend to be diffuse (i.e. high energy) 
ones. 

3. Fluctuations 

First, consider the cluster concentration for cluster sizes near i = i*. Performing a second- 
order Taylor series expansion of the exponent in (8) gives 

(i - i')' 
c'q(i) = cq(i*)  exp 

where 

For classical nucleation, U! = 9kT(i*)4/3/2Aly. Values of uj are given in table I. 
Equation (12) is similar in form to equations describing fluctuations about equilibrium 

(see, for example, [13]). An important difference, however, is that the exponent in (12) is 
positive, in contrast to the usual case of a Gaussian distribution about the mean value. This 
reflects the fact that i = i' represents an unstable equilibrium position. 

Energy fluctuations in a cluster can be examined in a standard way [13]. The mean 
energy and its mean square deviation for an i-cluster can be written 

2 8  - 
E ( i )  = kT - lnq; 

aT 

The final equation defines the specific heat per molecule in a cluster, c I .  In numerical 
calculations, this is taken to be the molecular heat capacity in the liquid state. Values of 
uE/kT are quoted in table 1. The energy distribution for an i-cluster can be written 

where the coefficient is chosen so that Jcq(i, E)dE = cq(i). 
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It is also possible to consider fluctuations in vector properties. For example, the centre 
of mass momentum of an i-cluster. P = 6=, pj .  has the following distribution: 

Consider now fluctuations in both i and E. The distribution can be found by performing a 
Taylor series expansion of (16) about i = i* to obtain 

From (5) and (6) it follows that 

H=kT*-  I n L + I n S  
:T ( :r ) 

= m,L - kT - cwT f kTZ- ( 
2 A1 [ y  - T g ]  = m , L  -kT -cvvT - - 

3(ir)'/3 

where the second form follows by using the Clausius Clapeyron equation for nP(- 
exp(-m,L/kT)/kT, where L is the latent heat of vaporization). The final form is 
appropriate for classical nucleation with InS = 2yA1/(3(i*)'/'kT). We have also used 
kTa(lnql)/aT = c,,, the molecular heat capacity of the monomer in the vapour phase at 
constant volume (= 3k/2 for monatomic monomers). As can be seen from the values in 
table 1, H may be positive or negative. 

If the temperature dependence of y is ignored, the final form of H in (23) is related to 
the q used by Feder et a l  [9] by H = q - cbvT where cby = cw + fk. Equation (18) can 
then be shown to be identical to equation (32) of [9]. In fact, however, for many substances, 
dy/dT is comparable to y / T  (see table I). 

4. Steady-state distributions 

To obtain a nucleation rate it is necessary to consider the mechanisms that form clusters and 
introduce an appropriate rate. The usual picture is that an i-cluster grows by gaining single 
monomers at a rate b(i) given by the product of the monomer-cluster sticking probability, 
SA, the cluster surface area, Ali2l3,  and the collision rate of the monomer with a plane 
surface of unit area, &E/V (where E = (8kT/~cm,)'/~ is the mean monomer molecular 
speed). Clusters may also evaporate, losing single molecules at a rate a(i), which is related 
to @(i) by the detailed balance condition in equilibrium: b(i)c'q(i) = a(i f 1)cq(i f 1). 
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At i = i', a(i*) = p(i'), To obtain the nucleation rate, J ,  the stead-state concentrations 
css(i) are introduced such that: 

.I, = p ( i ) ~ " ( i )  -CY( ;  + l)c"(i + 1). (21) 

By using the detailed balance condition to eliminate the a(i) ,  dividing by B(i)c'q(i) and 
summing over i (with css(l) = c Y l )  and P(N + 1) = O), the following result for the 
steady-state nucleation rate is obtained: 

where equation (12) has been used to obtain the final form. 
For reasons that should become clear, Jz is referred to as the 'isothermal rate'. The 

factor Jz/p(i*)c"(i*) is termed the Zeldovich factor and is typically 0.01 to 0.1 (see table 
1). 

However, the above approach does not take into account any  possible dependence of 
the gain and loss rates on properties of the cluster other than i. Suppose that these rates 
also depend on a second cluster property, z, say. The nucleation rate should then be written 

J = dz dz'[p(i. z -+ z ' ) P ( i .  z) - or(i + 1, z + z')cs(i + 1, z)} s s  (23) 
= j dz{j(i. z)css(i, z) -E ( :  + 1, z)c"(i + I,.?)] 

Following the discussion of fluctuations in the previous section, the equilibrium 
concentration would be expected to have a Gaussian distribution in z (with mean 2 and 
standard deviation uL). If the steady-state concentration has the same z dependence as the 
equilibrium concentration, then (23) reduces to (21) provided a(i + 1) and p(i) are equal 
to integrals over G(i  + 1, z )  and j ( i ,  z), weighted by Guassian factors. 

However, css(i, z )  may not have the same z dependence as P ( i ,  z). Such cases are 
treated in the following sections, but first we comment on the criteria for choosing the 
variables [ z )  to be represented. A complete treatment would include all the positions and 
momenta of the molecules in the cluster, and this was the approach originally adopted by 
Langer [IO]. However, this formulation is much too detailed to be of practical use and a 
more worthwhile approach is to follow Binder and Stauffer 1201 and attempt to distinguish 
between 'relevant' coordinates, that should be considered and 'irrelevant' ones which can 
be ignored, Binder and Stauffer 1201 show that if the cluster concentration is a sharply 
peaked function of a certain variable then that variable is irrelevant; however, they give 
no indication how such variables can be identified. Here. it is suggested that the rate of 
fluctuation also plays a factor in deciding if a variable is relevant or not. Properties that 
fluctuate on a timescale much shorter than the monomer addition timescale are irrelevant, 
since they have time to explore virtually the same range of values in the steady state as in the 
equilibrium case. Variables which fluctuate on timescales comparable to (or longer than) the 
time for the cluster to gain or lose a monomer, may have different distributions in the two 
cases and this will affect the nucleation rate. It would seem likely that internal properties 
of tightly-bound clusters (such as size and shape) would be irrelevant whereas properties 
which change only by external collisions (such as total cluster energy and momentum) will 
form the relevant coordinates. 
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5. Derivation of the Fokker-Planck equation 

For simplicity, only two relevant coordinates are considered: the number of monomers in 
the cluster, i ,  and the total cluster energy, E. The rate of change in concentration C(i ,  E) 
of clusters containing i molecules and having energy E is 

-(i, E )  = #J(i - 1, c, E --E)C(i - 1, E-E)dE+ a(i + 1, E, E+c)C( i+  1, E+E)dc ac at  s s 
The first term on the right represents the increase in C(i,  E) from sticking collisions between 
monomers with energy E and (i - I)-clusters of energy E --E (the rate for this process being 
p(i - 1, c, E - E)). Similarly, the second term represents the increase in C(i, E) due to 
(i + I)-clusters losing monomers. The rate at which an (i t 1)-cluster with energy E loses 
a monomer with energy E, u(i t 1, E, E), is related to the gain rate p(i ,  e, E -e) by the 
detailed balance condition, 

(25) 

The thud term in (24) gives the decrease in C(i ,  E) due to i-clusters gaining or losing 
a monomer, and the final term represents changes due to collisions which change E but 
not i .  This term is given the subscript ‘gas’ since contributions to this term arise from 
collisions with non-condensing gas molecules. However, if SA is less than 1, there would 
also be contributions from non-condensing collisions with vapour molecules. Considering 
only collisions with gas molecules, this final term can be written 

p(i, E,  E - E)Cq(i, E - E) = a(i + 1. E. E ) C q ( i  + 1, E) .  

(g) = p&)[ 1 P(E‘  -+ E)C(I’, E’)dE‘ - C(i, E)] (26) 
w 

where &(i) is the collision rate of gas molecules with an i-cluster and P(E’ --f E) is the 
probability that an individual collision changes the cluster’s energy from E‘ to E. 

The procedure for converting a master equation of the form of (26) to a Fokker-Planck 
equation is well known (although not without subtlety)-see, for example, Van Kampen 
[21]. The main assumptions are that only small jumps occur, so P(E’ + E) is a sharply 
peaked function of IE’- El, and that P(E’  -+ E) varies only slowly with both E and E‘ 
for constant IE’ - El. Then, equation (26) can be approximated by 

where 

q ( E )  = / dE‘(E - E’)jP(E -+ E’) 

and F ( i ,  E) = C(i. E)/Cq(i ,  E) (not to be confused with the Free energy, Fj). The final 
form in (27) follows because (aCq/a t ) , ,  equals zero (since, in equilibrium, the amount of 
non-condensing gas does not affect the cluster concentration in size and energy). 
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To determine the value of a2, it is necessary to consider a model for energy transfer 
by gas molecules. A model used previously [ 111 considered gas molecules colliding with 
clusters to form microcanonical systems which then decayed according to the density of 
states of the possible final states. The mean energy transfer from a cluster with energy 
E for this model is a l (E)  = [cbg/(iq + av)][E - E(i)], where as = cvg + 1/2k, cvg 
being the heat capacity at constant volume of a gas molecule. A relationship between a2 

and a1 can be found by substituting C q  in the first form of (27) and using the fact that 
(acyat) ,  = 0. The resulting value of az, assuming icl >> a,". is a az = 2cbgkTZ. 

The transformation of the remaining terms in (24) to Fokker-Planck form has been 
performed by Feder er al [9] and involves eliminating the 01 using the detailed balance 
condition and carrying out a second-order Taylor series expansion in both i and E. The 
integrals over E then just involve moments of the energy distribution of incoming monomers, 
which is taken to be a Maxwellian weighted by an extra E"* to take account of the increased 
monomer-cluster collision rate for faster monomers. Thus, the mean energy of colliding 
monomers, ( E )  = %"TI and their mean square energy, ( c z )  = %(cbv + k)TZ.  For more 
details, see 19,111. The resulting equation can be written in tensor form, 

- 

(- a a  -) D ( a/ai ) F(i, E) 
ai '  aE aiaE -(i, E )  

at 

where 

with 

where any dependence of B(i) on the cluster's energy E has been ignored. For sA < 1, 
there is an additional term in W2(E) to take account of the heat transfer by non-condensing 
vapour molecules. 

Equation (28) is identical to the equation derived by Feder et ai (equation (35) of [SI, 
since q = H + a v T  and b2 = W z  - c&Tz where bZ is defined on p 44 of [9]). The above 
discussion has concentrated on the form of the term arising from the non-condensable gas, 
since no detailed derivation of this term is given in [9]. Note that different models for gas 
molecule energy transfer will give different forms of az. 

6. Expression for the steady-state nucleation flux 

Langer [IO] has given a procedure for solving multidimensional Fokker-Planck equations 
of the form which arise in nucleation theory. In this section, Langer's procedure is applied 
to obtain a solution of equation (28). To simplify the notation somewhat, all quantities are 
made dimensionless by measuring energies ( E ,  u ~ ,  H ,  W) in units of kT and specific heats 
(av, Cbg) in units of k. 

The first step is to transform variables from i and E to ones which diagonalize the 
exponent in Ceq(i, E). The new variables, x and y, say, are related to the old ones by an 
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orthogonal transformation with matrix M , the columns of which are the eigenvectors of 
the matrix 

The corresponding eigenvalues +AI  and AA2 are given by, 

I /z 
-A.  = - H 2 + 1  _ -  1 +(-l)J[(-----)'+'I H 2 + 1  1 . (31) 
Z J  2 4  2.: zu; zaf .;a; 

The factor 4 is included in the definition of the eigenvalues to correspond with Langer's 
treatment and the signs are chosen so that A I  is negative. 

The equilibrium distribution in terms of x and y is 

The equation to be solved becomes 

where 

with 

V'[DVF(x. y)] = 0 (33) 

(34) 

In the expression for W 2 .  it is assumed that pg is proportional to p g / e  (the gas pressure 
divided by the square root of the gas molecule mass), and p is proportional to p v / f i .  
Also, in going from (29) to (34) the variation of p and W with i and E near the saddle 
point i = i*, E = E, has been ignored. 

Since [HI is generally large compared to 1, t an9  is small. The angle 3 is chosen so 
that AI  is the negative eigenvalue. Note, however, that M represents a rotation through 
$(x  - $) radians. 
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The next step is to assume that the required steady-state solution F ( x ,  y) is a function 
of a linear combination of x and y ,  that is 

F ( x *  Y) = f h x  + YY) = f ( 4 .  (35) 

Langer [lo] states that this assumption can be justified by solving the time-dependent 
problem, but does not reproduce the analysis. Alternatively, following Landauer and 
Swanson [21], this assumption can be justified U posteriori since it leads to a solution 
of (33) wrhich has all the properties required. Substituting (35) in (33) gives 

z 0 ( d ~ ~ ~ : + 2 d i z ~ 1 ~ z + d z z ~ 2 ) f  ( u ) - { ~ I [ ~ I I ~ I  +dtz~zlx +hz[diz~i +du~zlylf‘(u) = O  

(36) 

where the primes denote differentiation with respect to the argument o f f .  If this equation is 
only to contain functions of U = U I X  + uzy. the term in curly brackets must be proportional 
to U, that is 

From (37), it is possible to show that 

a result that will be used later. 
The negative value of K (which turns out to be the one of interest) is, 

K = & I ~ I I  + Azdzz - [(Aid~l - hzdzz)*+ 4 h 1 W ~ ~ l ” ~ ) .  (39) 

The solution of (36). satisfying f(u) -+ 1 for U + -co, is then f ( u )  = i(1 - 
efiu/(2l r l)l‘z]) where 

Using this solution in (33). the term in square brackets, which can be identified with the 
components of the steady-state flux, J, and J y ,  can be written 

where equation (37) have been used. 
If i and j are unit vectors in the directions of the x and y axes, it follows from (41) 

that J is in the direction ( u l / h l ) i  + (uz/Az) j .  It is also possible to show, using (38) and 
(40). that the exponent in (41) is constant in this direction. The nucleation flux is the 
integrated intensity of J across any surface not parallel to J .  Choosing the surface x = 0 
for convenience gives 
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0.50- 

0.45: 

Figure 2. J d J z  versus p,!p. for the mdel  system (dashed line) and for water using the 
parameters in table 1 (solid line). Also shown (crosses) are the numerical results for the model 
system, from [ll]. 

where (38) has been used to eliminate ui/lrl, remembering that r is negative. 

written 
In terms of the usual expression for the nucleation rate, equation (22). this flux can be 

The numerical evaluation of the quantities in (43) is straightforward; however, some 
simplification is possible when the magnitude of H is large (specifically, when H 2  >> 1 
and HZ >> oz/o;). Then it is possible to show that 

1 
- J S S  

Jz I + &  
-- 

where q = H t Cbv. Since W z  - & = cb, + c b p p g ~ m J m , / ( p , J m g ) ,  this result is the same 
as the formula derived in [9], if the temperature variation of y is ignored. 

7. Numerical results 

Table 1 gives values for J S s / J z  with no gas present (i.e. pg = 0) calculated from (43) 
and (44). For water, the values agree to three significant figures, whereas for nonane the 
approximate formula. equation (44), gives a value about 30% less than equation (43). 

To investigate the accuracy of both the Fokker-Planck approximation and the solution 
procedure used in the previous section, the values predicted by (43) for a model system 
are compared with those calculated in [ l l ]  by solving the integral equation for C(i, E ) ,  
equation (24), numerically. The results are shown in figure 2. The 'exact' numerical values 
from [ 111 are indicated by crosses and those calculated using (43) by the dashed line (for 
the model parameters used, values from (43) and (44) are virtually identical). Agreement 
with the exact results is very good at low gas pressures, although at higher pressures (44) 
overestimates the flux slightly. This may be due to an inadequate representation of the gas 
transition probability Pg(E + E') in the Fokker-Planck treatment. 
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The model uses a square-well cluster potential with parameters characteristic of the 
molecular latent heat and surface tension of water. Values for 'real' water, calculated from 
(43) using the parameters in table 1, are shown by the solid line in figure 2. The differences 
between the solid and dashed lines arise because the model results do not take into account 
the temperature variation of y and they also assume that the vapour and liquid heat capacities 
are the same. 

0.30; / 
0.25; 

0.051 

0.ooi --- 
0 2 4 5 8 10 12 11 16 18 20 22 24 20 28 30 

'bv 

Figure 3. .Is fh versus cbr, in units of k, with pa = 0 calculated from equation (43) (solid 
line) md from the approximation of it. equation (44) (dashed line). 

The accuracy of the approximation equation (44) to equation (43) is now investigated 
when p g  = 0 (which gives the maximum reduction from the isothermal rate, Jz). Figure 3 
shows the variation of J,,/Jz with cbv (measured in units of k), calculated from (43) and 
(44). Apart from Q,", all parameters are for nonane at S = SO, as listed in table 1. Since 
H / k T  N (7.9 - Q v / k ) ,  the results in figure 3 cover a range of positive and negative 
values, both large and small, for H .  The accurate and approximate values often differ by a 
factor of about 2, however, this is not significant in nucleation theory (where measurements 
are typically accurate only to within a factor of about 10, and differences between theory 
and experiment may exceed factors of lo6). The effect of varying c1 while keeping the 
other parameters fixed is also considered. Once again, the accurate values exceed the 
approximate ones from (44) (which predicts that the nucleation rate is independent of c1) 
but the difference, which increases with increasing CI. involves only modest factors. 

8. Conclusions 

The way in which the equilibrium cluster distribution, the cluster free energy, and the 
chemical potential of the critical cluster are related to the partition function for a cluster 
anywhere within the container volume, qi have been discussed. However, most theories (not 
just the classical theory) give the partition function (or some related quantity) for a cluster 
stationary in the laboratory frame, qpb. A new approach to relating these two quantities has 
been proposed which leads to equation (11). This result suggests that nucleation rates for 
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such models should be enhanced by a factor of approximately O.93i2vg/u~ (where ug is the 
volume per molecule i n  the vapour and it is assumed that U, = i u , )  instead of the factor 
proportional to i ' / 2 u , / u l  suggested in [8]. Since, in nucleation, i is typically about 100 and 
ug is roughly 1000 times u1, this factor is about lo7. It should be stressed, however, that 
(12) is valid only for a cluster model in which the interaction is independent of molecular 
positions. A significant extension of this work would be to include the effects of finite 
molecular size (which could be done along the lines followed in [8]) and intermolecular 
forces. 

The fluctuations of the equilibrium distribution in energy, and also coupled fluctuations 
in size and energy have been considered. These introduce a quantity H defined by (19) 
and given in the classical liquid droplet model by (20). However, the value of H is fairly 
insensitive to the model used. The extension of this approach to treat coupled fluctuations 
in other variables should be straightforward. 

In the steady state, properties other than the number of monomers in the cluster may be 
important in determining the nucleation rate and a way of identifying such properties has 
been proposed. One such variable is the cluster energy and a Fokker-Planck equation for 
the steady cluster distribution in size and energy variables has been derived. A procedure 
developed by Langer [lo] was then applied to obtain the nucleation flux from this equation. 
This procedure is more versatile and more general than that used by Feder et a1 [9] ,  
which is justifiable only when H >> cb., (i.e. large molecular latent heat compared to 
vapour molecule heat capacity). However, this is just the case that leads to the largest 
reduction in nucleation rate from the isothermal value (by a factor of 100 or more in the 
absence of background gas). In other circumstances the approximate formula, equation (44), 
underestimates the nucleation rate, although the differences (typically a factor 2 )  are not 
experimentally detectable at present. It should also be noted that Langer's procedure cannot 
be applied directly to the Fokker-Planck equation in fluctuation energy units (equation (35) 

The extension to more than two relevant variables is not difficult and Langer [lo] has 
given the full multidimensional treatment. The problem is to decide which other variables 
should be considered. Ellerby et a1 [17] have suggested that cluster volume fluctuations 
(at fixed i) may be important. However, here it is argued that for liquid-like clusters the 
volume fluctuates on a very short timescale (compared to that for monomer addition) and 
so it is likely to be an irrelevant variable. This viewpoint seems to be supported by the 
work of Langer and Turski [23] who considered a field-theoretical model of a vapour near 
its critical point and did not find significant non-equilibrium effects. 

The higher-dimensional result could also be used to treat centre-of-mass momentum 
fluctuations. However, the following argument suggests that these will have a negligible 
effect on the steady state nucleation rate. First, note that the equilibrium cluster distribution 
in i and P (found by using (12) in (17)) is already quadratic with no cross-tem, so no 
rotation is needed and D = D. Thus, the off-diagonal elements of D are found from the 
mean momentum transfer when a monomer hits a cluster with i e: i* and P = P = 0. But 
this is zero (the cluster is stationary and the monomers have an equilibrium Maxwellian 
distribution) so D is diagonal. In other words there is no coupling between the momentum 
variables and i. Of course, taking into account the variation of the elements of D with P 
near P = 0 introduces some coupling, as does the fact that P and E are not independent. 
However, these effects are likely to be very small. 

One system where a multidimensional approach would be useful is binary nucleation 
of sulphuric acid and water. The large heat of hydration means that three cluster variables 

of PI). 
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should be considered (number of acid molecules, number of water molecules, and total 
energy). 

Experimental nucleation rates for water and nonane are generally higher than the 
predictions of classical theory at low temperatures and lower at high temperatures. The 
proposed relationship equation (11) between qi and qfab leads to an enhancement of 
the classical predictions and therefore better agreement with experiments at very low 
temperatures but worse agreement at high temperatures. However, as only small changes 
in surface free energy are needed to produce large changes in nucleation rates, agreement 
with experiment could be restored with a better characterization of clusters. Indeed, current 
theories that claim to obtain good agreement with experiment without taking account of the 
difference between qi and qfab should be treated with suspicion. 

The results presented in section 6 predict that the presence of a non-condensable carrier 
gas will increase the nucleation rate by a factor of up to 100 over the case of nucleation of the 
pure vapour. This effect has not yet been observed experimentally, with most experiments 
showing no detectable effect of c d e r  gas on nucleation rate. One exception is the work 
of Katz et a1 [24] who find that the nucleation rate decreases by a very large factor as 
the carrier gas pressure increases (about 104 for a gas pressure increase of 2 bar). This 
interesting observation has yet to be corroborated or explained. 
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